Set benchmarks for AI readiness
You can use Cortex's AI Readiness Scorecard template to start setting benchmarks and checking whether your services meet criteria for your goals. The AI Readiness template evaluates whether services have the foundational software engineering practices in place to safely and effectively adopt AI technologies.
Learn how to use other features for an AI Readiness use case in Solutions: AI Readiness.
Create a Scorecard for AI Readiness
Step 1: Create the Scorecard and configure its basic settings
On the Scorecards page in your workspace, click Create Scorecard.
On the
AI Readinesstemplate, click Use.Configure basic settings, including the Scorecard's name, unique identifier, description, and more.
Learn about configuring the basic settings in the Creating a Scorecard documentation.
Step 2: Review and modify rules
Cortex's templated rules are based on common industry standards:
AI Readiness: Bronze level rules
Version control in use
git != nullBasic documentation exists
git.fileExists("README.md") OR git.fileExists("docs/README.md") OR git.fileExists("API.md")Service ownership defined
ownership.allOwners().length > 0Basic health monitoring
datadog.monitors().length > 0Dependency management
dependencies.in().length > 0 or dependencies.out().length > 0
AI Readiness: Silver level rules
Automated CI/CD pipeline
git.fileExists(".github/workflows/*.yml") OR git.fileExists("Jenkinsfile") OR git.fileExists(".gitlab-ci.yml") OR git.fileExists("azure-pipelines.yml")Integration testing implemented
git.codeSearch(query = "integration.*test|test.*integration", fileExtension = "*").length > 0 OR captures("integration-tests", custom("integration_tests_exist")) == "enabled"SLO defined
slos().length > 0Test coverage minimum met
captures("test-coverage", sonarqube.metric("coverage") >= 80)Secret management implemented
git.fileExists(".github/workflows/*") AND git.codeSearch(query = "secret", fileExtension = "yml").length > 0Incident response runbook
links("RUNBOOK").length > 0Deployment rollback capability
captures("rollback", custom("rollback_capability")) == "enabled" OR git.codeSearch(query = "rollback|revert|previous.*version", fileExtension = "*").length > 0
AI Readiness: Gold level rules
Distributed tracing implemented
captures("tracing", custom("distributed_tracing")) == "enabled" OR git.codeSearch(query = "jaeger|zipkin|opentelemetry|tracing", fileExtension = "*").length > 0Change approval process
links("CHANGE_APPROVAL").length > 0Data classification documented
git.fileExists("DATA-CLASSIFICATION.md") OR git.codeSearch(query = "data.*classif|pii|sensitive.*data|gdpr", fileExtension = "md").length > 0Comprehensive audit logging
captures("audit-log", custom("audit_logging")) == "enabled" OR git.codeSearch(query = "audit.*log|compliance.*log|access.*log", fileExtension = "*").length > 0Feature flags for controlled rollouts
launchDarkly != nullZero critical and high vulnerabilities
captures("critical-vulns", custom("critical_vulnerabilities")) == 0 AND captures("high-vulns", custom("high_vulnerabilities")) == 0AI model security scanning
captures("model-scan", custom("ai_model_scanning")) == "enabled" OR git.codeSearch(query = "model.*scan|adversarial.*test|bias.*detect", fileExtension = "*").length > 0
You can reorder, delete, and edit rules, add more rules to a level, and assign more points to a rule to signify its importance. Behind each rule is a Cortex Query Language (CQL) query; you can edit the existing CQL or write your own queries to further refine your rules.
Last updated
Was this helpful?