Prepare for effective use of AI tools
To prepare your services for effective usage of AI tools, you can use the AI Maturity Scorecard template. This Scorecard validates the presence of essential files, pre-commit, safeguards, and observability integrations, ensuring you can effectively leverage AI tools across the software lifecycle.
Create a Scorecard for AI Maturity
Step 1: Create the Scorecard and configure its basic settings
On the Scorecards page in your workspace, click Create Scorecard.
On the
AI Maturitytemplate, click Use.Configure basic settings, including the Scorecard's name, unique identifier, description, and more.
Learn about configuring the basic settings in the Creating a Scorecard documentation.
Step 2: Review and modify rules
Cortex's templated rules are based on common industry standards:
AI Maturity: Bronze level rules
Git PR templates exist
git.fileExists("pull_request_template.md") OR git.fileExists("docs/pull_request_template.md") OR git.fileExists(".github/PULL_REQUEST_TEMPLATE.md") OR git.fileExists(".github/pull_request_template.md") OR git.fileExists(".github/PULL_REQUEST_TEMPLATE/*.md") OR git.fileExists("PULL_REQUEST_TEMPLATE/*.md") OR git.fileExists("docs/PULL_REQUEST_TEMPLATE/*.md")Pre-commit settings file
git.fileExists(".pre-commit-config.yaml")Repository contains README file
git.fileExists("README.md")
AI Maturity: Silver level rules
Anthropic Claude instructions in repo
git.fileExists("CLAUDE.md")Google Gemini instructions in repo
git.fileExists("GEMINI.md")GitHub Copilot coding agent development environment
git.fileExists(".github/workflows/copilot-setup-steps.yml")GitHub Copilot instructions in repo
git.fileExists(".github/copilot-instructions.md")Amazon Q instructions in repo
git.fileExists("AmazonQ.md")
AI Maturity: Gold level rules
Amazon Q rules in repo
git.fileExists(".amazonq/rules/*.md")GitHub Copilot rules in repo
git.fileExists(".github/instructions/*.instructions.md")Cursor rules in repo
git.fileExists(".cursor/rules/*")AI-driven anomaly detection in observability stack
datadog.monitors().filter((monitor) => monitor.name.matches(".ai.")).length > 0
You can reorder, delete, and edit rules, add more rules to a level, and assign more points to a rule to signify its importance. Behind each rule is a Cortex Query Language (CQL) query; you can edit the existing CQL or write your own queries to further refine your rules.
Last updated
Was this helpful?